Drought prediction using artificial intelligence models based on climate data and soil moisture

Author:

Oyounalsoud Mhamd Saifaldeen,Yilmaz Abdullah Gokhan,Abdallah Mohamed,Abdeljaber Abdulrahman

Abstract

AbstractDrought is deemed a major natural disaster that can lead to severe economic and social implications. Drought indices are utilized worldwide for drought management and monitoring. However, as a result of the inherent complexity of drought phenomena and hydroclimatic condition differences, no universal drought index is available for effectively monitoring drought across the world. Therefore, this study aimed to develop a new meteorological drought index to describe and forecast drought based on various artificial intelligence (AI) models: decision tree (DT), generalized linear model (GLM), support vector machine, artificial neural network, deep learning, and random forest. A comparative assessment was conducted between the developed AI-based indices and nine conventional drought indices based on their correlations with multiple drought indicators. Historical records of five drought indicators, namely runoff, along with deep, lower, root, and upper soil moisture, were utilized to evaluate the models’ performance. Different combinations of climatic datasets from Alice Springs, Australia, were utilized to develop and train the AI models. The results demonstrated that the rainfall anomaly drought index was the best conventional drought index, scoring the highest correlation (0.718) with the upper soil moisture. The highest correlation between the new and conventional indices was found between the DT-based index and the rainfall anomaly index at a value of 0.97, whereas the lowest correlation was 0.57 between the GLM and the Palmer drought severity index. The GLM-based index achieved the best performance according to its high correlations with conventional drought indicators, e.g., a correlation coefficient of 0.78 with the upper soil moisture. Overall, the developed AI-based drought indices outperformed the conventional indices, hence contributing effectively to more accurate drought forecasting and monitoring. The findings emphasized that AI can be a promising and reliable prediction approach for achieving better drought assessment and mitigation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3