An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer

Author:

Thambiraj S.,Vijayalakshmi R.,Ravi Shankaran D.

Abstract

AbstractNanoformulation based drug delivery is one of the most important research areas in the field of nanomedicine, which provides promising alternatives to the limitations of conventional chemotherapy. Nano drug delivery enables improved pharmacokinetic profile, bioavailability and therapeutic efficiency compared to the regular chemotherapeutic drugs. Herein, we have established a simple method for the synthesis of docetaxel (Dtx) encapsulated poly (ethylene glycol) (PEG) functionalized gold nanoparticles (AuNPs) for targeted drug delivery to prostate cancer. AuNPs were synthesized by the citrate ion reduction method followed by functionalization with thiol-PEG-amine (SH-PEG-NH2). SH-PEG-NH2 functionalized AuNPs were conjugated with the targeting vehicle, folic acid (FA). The anticancer drug, Dtx was encapsulated within AuNPs by the non-covalent linkage method. The physicochemical characteristics of the synthesized nanoformulations were extensively characterized by various spectral and microscopic studies. HR-TEM indicates the average size of the AuNPs is 16 nm and the nanoformulations is 18 nm. The encapsulation efficiency of the Dtx is ~ 96% which is confirmed by the elemental mapping analysis. The in vitro drug release profile of Dtx and AuNPs nanoformulations were studied by the dialysis membrane method. The anticancer activity of docetaxel encapsulated AuNPs were evaluated with prostate cancer cell lines (PC3). The drug encapsulated nanoformulations reduced the cell viability to about 40% (40 µM concentration at 24, 48 and 72 h of treatment). The optical microscopy observation reveals that the damage of prostate cancer cells after exposure to Dtx encapsulated AuNPs. The good cytotoxic activity of the present nanoformulation against prostate cancer cell lines enables its application for targeted drug delivery to prostate cancer.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3