New thermal decomposition pathway for TATB

Author:

Morrison Keith D.,Racoveanu Ana,Moore Jason S.,Burnham Alan K.,Koroglu Batikan,Coffee Keith R.,Panasci-Nott Adele F.,Klunder Gregory L.,Steele Bradley A.,McClelland M. A.,Reynolds John G.

Abstract

AbstractUnderstanding the thermal decomposition behavior of TATB (1,3,5-triamino-2,4,6-trinitrobenzene) is a major focus in energetic materials research because of safety issues. Previous research and modelling efforts have suggested benzo-monofurazan condensation producing H2O is the initiating decomposition step. However, early evolving CO2 (m/z 44) along with H2O (m/z 18) evolution have been observed by mass spectrometric monitoring of head-space gases in both constant heating rate and isothermal decomposition studies. The source of the CO2 has not been explained, until now. With the recent successful synthesis of 13C6-TATB (13C incorporated into the benzene ring), the same experiments have been used to show the source of the CO2 is the early breakdown of the TATB ring, not adventitious C from impurities and/or adsorbed CO2. A shift in mass m/z 44 (CO2) to m/z 45 is observed throughout the decomposition process indicating the isotopically labeled 13C ring breakdown occurs at the onset of thermal decomposition along with furazan formation. Partially labeled (N18O2)3-TATB confirms at least some of the oxygen comes from the nitro-groups. This finding has a significant bearing on decomposition computational models for prediction of energy release and deflagration to detonation transitions, with respect to conditions which currently do not recognize this oxidation step.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference32 articles.

1. Boddu, V. M., Viswanath, D. S., Ghosh, T. K. & Damavarapu, R. 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) and TATB-based formulations—A review. J. Hazard. Mater. 181, 1–8. https://doi.org/10.1016/j.jhazmat.2010.04.120 (2010).

2. Kahl, E. M. & Reynolds, J. G. Thermal decomposition of TATB—Review of molecular characterization. in 2018 International Explosives Safety Symposium & Exposition, San Diego Session: Risk Management—Thermal Effects III—Structural Design & Reaction Violence, https://ndiastorage.blob.core.usgovcloudapi.net/ndia/-2018/intexpsafety/ReynoldsPaper.pdf, LLNL-PROC-755282, available at Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550.

3. Rice, S. F. & Simpson, R. L. The unusual stability of TATB: A review of the scientific literature. Report UCRL-LR-103683, Lawrence Livermore National Laboratory, Livermore CA, 94550, USA (1990).

4. Tarver, C. M., Chidester, S. K. & Nichols, A. L. III. Critical conditions for impact- and shock-induced hot spots in solid explosives. J. Phys. Chem. 100, 5794–5799. https://doi.org/10.1021/jp953123s (1996).

5. Hobbs, M. L. & Kaneshige, M. J. Effect of confinement during cookoff of TATB. J. Phys. Conf. Ser. 500, 52017. https://doi.org/10.1088/1742-6596/500/5/052017 (2014).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3