Adapting the pre-trained convolutional neural networks to improve the anomaly detection and classification in mammographic images

Author:

Saber Abeer,Hussien Abdelazim G.,Awad Wael A.,Mahmoud Amena,Allakany Alaa

Abstract

AbstractMortality from breast cancer (BC) is among the top causes of cancer death in women. BC can be effectively treated when diagnosed early, improving the likelihood that a patient will survive. BC masses and calcification clusters must be identified by mammography in order to prevent disease effects and commence therapy at an early stage. A mammography misinterpretation may result in an unnecessary biopsy of the false-positive results, lowering the patient’s odds of survival. This study intends to improve breast mass detection and identification in order to provide better therapy and reduce mortality risk. A new deep-learning (DL) model based on a combination of transfer-learning (TL) and long short-term memory (LSTM) is proposed in this study to adequately facilitate the automatic detection and diagnosis of the BC suspicious region using the 80–20 method. Since DL designs are modelled to be problem-specific, TL applies the knowledge gained during the solution of one problem to another relevant problem. In the presented model, the learning features from the pre-trained networks such as the squeezeNet and DenseNet are extracted and transferred with the features that have been extracted from the INbreast dataset. To measure the proposed model performance, we selected accuracy, sensitivity, specificity, precision, and area under the ROC curve (AUC) as our metrics of choice. The classification of mammographic data using the suggested model yielded overall accuracy, sensitivity, specificity, precision, and AUC values of 99.236%, 98.8%, 99.1%, 96%, and 0.998, respectively, demonstrating the model’s efficacy in detecting breast tumors.

Funder

Linköping University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3