Author:
Li Siyuan,Liu Yuan,Zeng Jiafu,Liu Yepeng,Li Yue,Xie Qingsong
Abstract
AbstractRemoving texture while preserving the main structure of an image is a challenging task. To address this, this paper propose an image smoothing method based on global gradient sparsity and local relative gradient constraints optimization. To reduce the interference of complex texture details, adopting a multi-directional difference constrained global gradient sparsity decomposition method, which provides a guidance image with weaker texture detail gradients. Meanwhile, using the luminance channel as a reference, edge-aware operator is constructed based on local gradient constraints. This operator weakens the gradients of repetitive and similar texture details, enabling it to obtain more accurate structural information for guiding global optimization of the image. By projecting multi-directional differences onto the horizontal and vertical directions, a mapping from multi-directional differences to bi-directional gradients is achieved. Additionally, to ensure the consistency of measurement results, a multi-directional gradient normalization method is designed. Through experiments, we demonstrate that our method exhibits significant advantages in preserving image edges compared to current advanced smoothing methods.
Funder
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Tomasi, C. & Manduchi, R. Bilateral filtering for gray and color images. In Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), 839–846 (IEEE, 1998).
2. Paris, S. & Durand, F. A fast approximation of the bilateral filter using a signal processing approach. In Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006, Proceedings, Part IV 9, 568–580 (Springer, 2006).
3. Yang, Q. Recursive bilateral filtering. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part I 12, 399–413 (Springer, 2012).
4. Cho, H., Lee, H., Kang, H. & Lee, S. Bilateral texture filtering. ACM Trans. Gr. 33, 1–8 (2014).
5. He, K., Sun, J. & Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2012).