Modeling study of divertor particle and heat flux asymmetries for EAST H-mode discharges

Author:

Deng G. Z.,Lin X. D.

Abstract

AbstractThe BOUT++ transport code is run to study the effects of plasma drifts on the divertor out-in asymmetries (DOIAs) of particle and heat fluxes and their decay widths for EAST lower single null H-mode discharges. The diamagnetic drift seems to have no effects on the DOIAs of total particle and heat fluxes due to its divergence-free nature. However, it could significantly increase the DOIAs of peak particle and heat fluxes and the flux decay widths. The E × B drift is found to induce a large plasma flow to the divertor region, enhancing the DOIAs of both total and peak particle and heat fluxes and the flux decay widths. Both the radial and poloidal components of the E × B drift are necessary in increasing the DOIAs, however, the radial E × B drift seems to play a more important role. The effects on the DOIAs caused by both diamagnetic and E × B drifts are reversed with the reverse of toroidal magnetic field. The heat flux decay width λq and spreading width Sq are important physical and engineering parameters for the divertors and could be obtained by fitting the heat flux profiles at divertor targets. The λq at the outer target from the simulation case with all drifts could well match with the multi-machine scaling proposed by Eich and the DOIA of λq is in reasonable agreement with the scaling proposed by Goldston.

Funder

National Natural Science Foundation of China

National MCF Energy R&D Program

AHNFS

Institute of Energy, Hefei Comprehensive National Science Center

Natural Science Foundation of Hunan Province

U.S. Department of Energy by Lawrence Livermore National Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3