Abstract
AbstractEffective management of exploited populations is based on an understanding of population dynamics and evolutionary processes. In spatially structured populations, dispersal is a central process that ultimately can affect population growth and viability. It can be influenced by environmental conditions, individual phenotypes, and stochastic factors. However, we have a limited knowledge of the relative contribution of these components and its interactions, and which traits can be used as reliable predictors of the dispersal ability. Here, we conducted a longitudinal field experiment aimed to identify traits which can be used as proxy for dispersal in juvenile brown trout (Salmo trutta L.). We measured body size and standard metabolic rates, and estimated body shapes for 212 hatchery-reared juvenile fish that were marked with individual codes and released in a small coastal stream in northwest Spain. We registered fish positions and distances to the releasing point after 19, 41, 60 and 158 days in the stream. We detected a high autocorrelation of dispersal distances, demonstrating that most individuals settle down relatively soon and then hold stable positions over the study period. Body size and fish shape were reliable predictors of dispersal, with bigger and more robust-set individuals being more likely to settle closer to the release site than smaller and more elongated fish. In addition, the analysis of spacing and spatial patterns indicated that the dispersal of introduced fish could affect the distribution of resident conspecifics. All together, these results suggest that stocking programs aimed to the enhancement of overexploited populations at fine spatial scales can be optimized by adjusting the size and shape of the introduced fish to specific management targets and environmental conditions.
Funder
Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología
Gobierno del Principado de Asturias
Ministerio de Educación, Cultura y Deporte
Ministerio de Medio Ambiente y Medio Rural y Marino
Publisher
Springer Science and Business Media LLC
Reference73 articles.
1. Bullock, J. M., Kenward, R. E. & Hails, R. S. Dispersal Ecology (Blackwell, 2002).
2. Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary Ecology Of Dispersal. Trends Ecol. Evol. 14, 88–90 (1999).
3. Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2009).
4. Vøllestad, L. A. et al. Small-scale dispersal and population structure in stream-living brown trout (Salmo trutta) inferred by mark–recapture, pedigree reconstruction, and population genetics. Can. J. Fish. Aquat. Sci. 69, 1513–1524 (2012).
5. Edelsparre, A. H., Shahid, A. & Fitzpatrick, M. J. Habitat connectivity is determined by the scale of habitat loss and dispersal strategy. Ecol. Evol. 8, 5508–5514 (2018).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献