Empirical dynamics of railway delay propagation identified during the large-scale Rastatt disruption

Author:

Büchel Beda,Spanninger Thomas,Corman Francesco

Abstract

AbstractTransport networks are becoming increasingly large and interconnected. This interconnectivity is a key enabler of accessibility; on the other hand, it results in vulnerability, i.e. reduced performance, in case any specific part is subject to disruptions. We analyse how railway systems are vulnerable to delay, and how delays propagate in railway networks, studying real-life delay propagation phenomena on empirical data, determining real-life impact and delay propagation for the uncommon case of railway disruptions. We take a unique approach by looking at the same system, in two different operating conditions, to disentangle processes and dynamics that are normally present and co-occurring in railway operations. We exploit the unique chance to observe a systematic change in railway operations conditions, without a correspondent system change of infrastructure or timetable, coming from the occurrence of the large-scale disruption at Rastatt, Germany, in 2017. We define new statistical methods able to detect weak signals in the noisy dataset of recorded punctuality for passenger traffic in Switzerland, in the disrupted and undisrupted state, along a period of 1 year. We determine how delay propagation changed, and quantify the heterogeneous, large-scale cascading effects of the Rastatt disruption towards the Swiss network, hundreds of kilometers away. Operational measures of transport performance (i.e. punctuality and delays), while globally being very decreased, had a statistically relevant positive increase (though very geographically heterogeneous) on the Swiss passenger traffic during the disruption period. We identify two factors for this: (1) the reduced delay propagation at an international scale; and (2) to a minor extent, rerouted railway freight traffic; which show to combine linearly in the observed outcomes.

Funder

SNF

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3