High capacity for a dietary specialist consumer population to cope with increasing cyanobacterial blooms

Author:

Ledesma Matias,Gorokhova Elena,Garbaras Andrius,Röjning Linda,Brena Beatriz,Karlson Agnes M. L.

Abstract

AbstractWe present a common-garden experiment to examine the amphipod Monoporeia affinis, a key deposit-feeder in the Baltic Sea, a low diversity system offering a good model for studying local adaptations. In the northern part of this system, the seasonal development of phytoplankton is characterized by a single diatom bloom (high nutritional quality), whereas in the south, the diatom bloom is followed by a cyanobacteria bloom (low nutritional quality) during summer. Therefore, the nutrient input to the benthic system differs between the sea basins. Accordingly, the amphipod populations were expected to be dietary specialists in the north and generalists in the south. We tested this hypothesis using a combination of stable isotope tracers, trophic niche analyses, and various endpoints of growth and health status. We found that when mixed with diatomes, the toxin-producing cyanobacteria, were efficiently incorporated and used for growth by both populations. However, contrary to expectations, the feeding plasticity was more pronounced in the northern population, indicating genetically-based divergence and suggesting that these animals can develop ecological adaptations to the climate-induced northward cyanobacteria expansion in this system. These findings improve our understanding regarding possible adaptations of the deposit-feeders to increasing cyanobacteria under global warming world in both limnic and marine ecosystems. It is possible that the observed effects apply to other consumers facing altered food quality due to environmental changes.

Funder

The King Carl XVI 50-year Foundation for Science, Technology and Environment

Initiation grant from Stockholm University, Departmental of Ecology, Environment and Plant Science

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3