Design and analysis of ELM-based predefined time sliding mode adaptive controller for PMLM position control under physical constraints

Author:

Riaz Saleem,Li Bingqiang,Qi Rong

Abstract

AbstractAchieving accurate position tracking for robotics and industrial servo systems is an extremely challenging task, particularly when dealing with control saturation, parameter perturbation, and external disturbance. To address these challenges, a predefined time convergent sliding mode adaptive controller (PTCSMAC) has been proposed for a permanent magnet linear motor (PMLM). A novel sliding mode surface (SMS) with predefined time convergence PDTC has been constructed, which ensures that the error converges to zero within the prescribed time. The system not only meets the expected performance standards but also has a uniformly bounded motor speed. The trajectory tracking error in SMS is proven to converge to zero within the predefined time. This predefined time stability of the closed-loop system has been demonstrated by using the Lyapunov stability criterion with PDTC. The convergence time (CT) can be arbitrarily set, and the upper bound of it is not affected by the initial value and control parameters of the system. A new updated version of extreme learning machine (ELM) is introduced to approximate the uncertain part of the system based on PDTC. The ELM is also provided with the hyperbolic tangent function to estimate the saturation constraint. This is done by converting the function into a linear function concerning the unconstrained control input variable. Then, based on established stability, a novel sliding mode adaptive controller (PTCSMAC) with predefined time convergence is designed. The convergence time (CT) of the controller is unaffected by the initial conditions as well as the control parameters. The rigorous numerical simulations on the PMLM model with complex disturbances verify the strong robustness and high-precision tracking characteristic of the proposed control law.

Funder

the Shaanxi Provincial Science Fund for Distinguished Young Scholars

the Joint Key Project of Shaanxi Key R&D Program

Publisher

Springer Science and Business Media LLC

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3