Rhizosphere bacteria associated with Chenopodium quinoa promote resistance to Alternaria alternata in tomato

Author:

Zahoor Sidra,Naz Rabia,Keyani Rumana,Roberts Thomas H.,Hassan Muhammad N.,Yasmin Humaira,Nosheen Asia,Farman Saira

Abstract

AbstractMicroorganisms can interact with plants to promote plant growth and act as biocontrol agents. Associations with plant growth-promoting rhizobacteria (PGPR) enhance agricultural productivity by improving plant nutrition and enhancing protection from pathogens. Microbial applications can be an ideal substitute for pesticides or fungicides, which can pollute the environment and reduce biological diversity. In this study, we isolated 68 bacterial strains from the root-adhering soil of quinoa (Chenopodium quinoa) seedlings. Bacterial strains exhibited several PGPR activities in vitro, including nutrient solubilization, production of lytic enzymes (cellulase, pectinase and amylase) and siderophore synthesis. These bacteria were further found to suppress the mycelial growth of the fungal pathogen Alternaria alternata. Nine bacterial strains were selected with substantial antagonistic activity and plant growth-promotion potential. These strains were identified based on their 16S rRNA gene sequences and selected for in planta experiments with tomato (Solanum lycopersicum) to estimate their growth-promotion and disease-suppression activity. Among the selected strains, B. licheniformis and B. pumilus most effectively promoted tomato plant growth, decreased disease severity caused by A. alternata infection by enhancing the activities of antioxidant defense enzymes and contributed to induced systemic resistance. This investigation provides evidence for the effectiveness and viability of PGPR application, particularly of B. licheniformis and B. pumilus in tomato, to promote plant growth and induce systemic resistance, making these bacteria promising candidates for biofertilizers and biocontrol agents.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3