Individual differences in white matter microstructure of the face processing brain network are more differentiated from global fibers with increasing ability

Author:

Liu Xinyang,Geiger Mattis,Zhou Changsong,Hildebrandt Andrea

Abstract

AbstractFace processing—a crucial social ability—is known to be carried out in multiple dedicated brain regions which form a distinguishable network. Previous studies on face processing mainly targeted the functionality of face-selective grey matter regions. Thus, it is still partly unknown how white matter structures within the face network underpins abilities in this domain. Furthermore, how relevant abilities modulate the relationship between face-selective and global fibers remains to be discovered. Here, we aimed to fill these gaps by exploring linear and non-linear associations between microstructural properties of brain fibers (namely fractional anisotropy, mean diffusivity, axial and radial diffusivity) and face processing ability. Using structural equation modeling, we found significant linear associations between specific properties of fibers in the face network and face processing ability in a young adult sample (N = 1025) of the Human Connectome Project. Furthermore, individual differences in the microstructural properties of the face processing brain system tended toward stronger differentiation from global brain fibers with increasing ability. This is especially the case in the low or high ability range. Overall, our study provides novel evidence for ability-dependent specialization of brain structure in the face network, which promotes a comprehensive understanding of face selectivity.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3