Abstract
AbstractChlordecone (CLD) levels measured in the rivers of the French West Indies were among the highest values detected worldwide in freshwater ecosystems, and its contamination is recognised as a severe health, environmental, agricultural, economic, and social issue. In these tropical volcanic islands, rivers show strong originalities as simplified food webs, or numerous amphidromous migrating species, making the bioindication of contaminations a difficult issue. The objective of this study was to search for biological responses to CLD pollution in a spatially fixed and long-lasting component of the rivers in the West Indies: the epilithic biofilm. Physical properties were investigated through complementary analyses: friction, viscosity as well as surface adhesion were analyzed and coupled with measures of biofilm carbon content and exopolymeric substance (EPS) production. Our results have pointed out a mesoscale chemical and physical reactivity of the biofilm that can be correlated with CLD contamination. We were able to demonstrate that epilithic biofilm physical properties can effectively be used to infer freshwater environmental quality of French Antilles rivers. The friction coefficient is reactive to contamination and well correlated to carbon content and EPS production. Monitoring biofilm physical properties could offer many advantages to potential users in terms of effectiveness and ease of use, rather than more complex or time-consuming analyses.
Funder
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Reference83 articles.
1. Monnier, O., Basilico, L., Reyjol, Y. et al. La bioindication en outre-mer: Situation et perspectives dans le contexte de la directive cadre sur l’eau. Synthèse du séminaire ONEMA «Méthodes de bioindication adaptées aux départements d’outre-mer » Paris, France (2016). https://www.seminaire-evaluation-outremer.oieau.fr/.
2. Jackson, D. A., Peres-Neto, P. R. & Olden, J. D. What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci. 58, 157–170 (2001).
3. Battin, T. et al. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).
4. Abreu, P. C. et al. Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (d13C and d15N). J. Exp. Mar. Biol. Ecol. 347, 88–96 (2007).
5. Lefrançois, E. et al. Epilithic biofilm as a key factor for small-scale river fisheries on Caribbean islands. Fish. Manag. Ecol. 18, 211–220 (2011).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献