Author:
Purniawan Agung,Lusida Maria Inge,Pujiyanto Royan Wafi,Nastri Aldise Mareta,Permanasari Adita Ayu,Harsono Alfonsus Adrian Hadikusumo,Oktavia Nur Hafidzah,Wicaksono Sigit Tri,Dewantari Jezzy Renova,Prasetya Rima Ratnanggana,Rahardjo Krisnoadi,Nishimura Mitsuhiro,Mori Yasuko,Shimizu Kazufumi
Abstract
AbstractTo halt the pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), governments around the world have imposed policies, such as lockdowns, mandatory mask wearing, and social distancing. The application of disinfecting materials in shared public facilities can be an additional measure to control the spread of the virus. Copper is a prominent material with antibacterial and antiviral effects. In this study, we synthesized copper nanoparticles (CuNPs) as a surface coating agent and assessed their antiviral activity against SARS-CoV-2. CuNPs with a mean size of 254 nm in diameter were synthesized from copper sulfate as a source and were predominantly composed of copper oxide. The synthesized CuNPs were mixed with resin-based paint (CuNP/paint) and sprayed on the surface of stainless steel remnants. SARS-CoV-2 lost 97.8% infectivity on the CuNP/paint-coated surface after 30 min of exposure and more than 99.995% infectivity after 1 h of exposure. The inactivation rate was approximately 36-fold faster than that on the paint alone-coated and uncoated surfaces. The CuNP/paint-coated surface showed powerful inactivation of SARS-CoV-2 infectivity, although further study is needed to elucidate the inactivation mechanisms. Applications of CuNP/paint coatings to public or hospital facilities and other commonly touched areas are expected to be beneficial.
Funder
the Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献