Loss of Krüppel-like factor 9 deregulates both physiological gene expression and development

Author:

Drepanos Laura,Gans Ian M.,Grendler Janelle,Guitar Sophia,Fuqua J. Heath,Maki Nathaniel J.,Tilden Andrea R.,Graber Joel H.,Coffman James A.

Abstract

AbstractKrüppel-like factor 9 (Klf9) is a ubiquitously expressed transcription factor that is a feedforward regulator of multiple stress-responsive and endocrine signaling pathways. We previously described how loss of Klf9 function affects the transcriptome of zebrafish larvae sampled at a single time point 5 days post-fertilization (dpf). However, klf9 expression oscillates diurnally, and the sampled time point corresponded to its expression nadir. To determine if the transcriptomic effects of the klf9−/− mutation vary with time of day, we performed bulk RNA-seq on 5 dpf zebrafish embryos sampled at three timepoints encompassing the predawn peak and midmorning nadir of klf9 expression. We found that while the major effects of the klf9−/− mutation that we reported previously are robust to time of day, the mutation has additional effects that manifest only at the predawn time point. We used a published single-cell atlas of zebrafish development to associate the effects of the klf9−/− mutation with different cell types and found that the mutation increased mRNA associated with digestive organs (liver, pancreas, and intestine) and decreased mRNA associated with differentiating neurons and blood. Measurements from confocally-imaged larvae suggest that overrepresentation of liver mRNA in klf9−/− mutants is due to development of enlarged livers.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute of General Medical Sciences

National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3