A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran

Author:

Pouyan Soheila,Pourghasemi Hamid Reza,Bordbar Mojgan,Rahmanian Soroor,Clague John J.

Abstract

AbstractWe used three state-of-the-art machine learning techniques (boosted regression tree, random forest, and support vector machine) to produce a multi-hazard (MHR) map illustrating areas susceptible to flooding, gully erosion, forest fires, and earthquakes in Kohgiluyeh and Boyer-Ahmad Province, Iran. The earthquake hazard map was derived from a probabilistic seismic hazard analysis. The mean decrease Gini (MDG) method was implemented to determine the relative importance of effective factors on the spatial occurrence of each of the four hazards. Area under the curve (AUC) plots, based on a validation dataset, were created for the maps generated using the three algorithms to compare the results. The random forest model had the highest predictive accuracy, with AUC values of 0.994, 0.982, and 0.885 for gully erosion, flooding, and forest fires, respectively. Approximately 41%, 40%, 28%, and 3% of the study area are at risk of forest fires, earthquakes, floods, and gully erosion, respectively.

Funder

College of Agriculture, Shiraz University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference133 articles.

1. Tsakiris, G. Practical application of risk and hazard concepts in proactive planning. Eur. Water 19, 47–56 (2007).

2. Kappes, M. S., Keiler, M., von Elverfeldt, K. & Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 64, 1925–1958 (2012).

3. UNEP. Agenda 21. Technical Report, United Nations Conference on Environment and Development. https://www.un.org/en/conferences/environment/rio (1992).

4. Van Westen, C. J., Montoya, L., Boerboom, L. & Badilla Coto, E. Multi-hazard risk assessment using GIS in urban areas: A case study for the city of Turrialba, Costa Rica. In Proceedings of the regional workshop on best practice in disaster mitigation, Bali 120–136 (2002).

5. Binita, K., Shepherd, J., King, A. W. & Gaither, C. J. Multi-hazard climate risk projections for the United States. Nat. Hazards 105, 1963–1976 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3