Author:
Yoshida Yohko,Shimizu Ippei,Shimada Atsuhiro,Nakahara Keita,Yanagisawa Sachiko,Kubo Minoru,Fukuda Shinji,Ishii Chiharu,Yamamoto Hiromitsu,Ishikawa Takamasa,Kano Kuniyuki,Aoki Junken,Katsuumi Goro,Suda Masayoshi,Ozaki Kazuyuki,Yoshida Yutaka,Okuda Shujiro,Ohta Shigeo,Okamoto Shiki,Minokoshi Yasuhiko,Oda Kanako,Sasaoka Toshikuni,Abe Manabu,Sakimura Kenji,Kubota Yoshiaki,Yoshimura Norihiko,Kajimura Shingo,Zuriaga Maria,Walsh Kenneth,Soga Tomoyoshi,Minamino Tohru
Abstract
AbstractLow body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.
Publisher
Springer Science and Business Media LLC