Modeling forecast errors for microgrid operation using Gaussian process regression

Author:

Yoo Yeuntae,Jung Seungmin

Abstract

AbstractMicrogrids, denoting small-scale and self-sustaining grids, constitute a pivotal component in future power systems with a high penetration of renewable generators. The inherent uncertainty tied to renewable power generation, typified by photovoltaic and wind turbine systems, necessitates counterbalancing mechanisms. These mechanisms encompass Energy storage systems or conventional thermal fossil-fuel generators imbued with heightened flexibility. Addressing the uncertainty stemming from renewable generators mandates a cost-effective assessment and operational strategy for said compensatory devices. To this end, myriad uncertainty factors warrant scrutiny, conceivably concretized into a unified probability distribution function (PDF) that takes into account their temporal inter-dependencies. Diverse uncertainty factors, characterized by varying marginal distributions and scales, can be assimilated into a multivariate probability distribution through a conversion to normal distributions via rank correlation. However, with the escalation in the number of uncertainty factors embraced within a microgrid context, the endeavour becomes notably intricate when aiming to define conditional probability distributions originating from joint PDFs. This paper presents a method proposing the modelling of net-load forecast error distribution, considering the interplay among uncertainty factors. The approach introduces a data-driven Gaussian process regression technique for training and validating conditional PDFs among these uncertainty factors. Notably, this approach facilitates the transformation of said factors into normal distributions while preserving their inherent marginal characteristics. The resultant conditional density function, as per the proposed methodology, exhibits enhanced suitability for estimating net-load error distribution. Consequently, the conditional density function stemming from this proposed approach demonstrates superior aptitude in approximating the distribution of net load error.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3