A fast and accurate identification model for Rhinolophus bats based on fine-grained information

Author:

Cao Zhong,Li Chuxian,Wang Kunhui,He Kai,Wang Xiaoyun,Yu Wenhua

Abstract

AbstractBats are a crucial component within ecosystems, providing valuable ecosystem services such as pollination and pest control. In practical conservation efforts, the classification and identification of bats are essential in order to develop effective conservation management programs for bats and their habitats. Traditionally, the identification of bats has been a manual and time-consuming process. With the development of artificial intelligence technology, the accuracy and speed of identification work of such fine-grained images as bats identification can be greatly improved. Bats identification relies on the fine features of their beaks and faces, so mining the fine-grained information in images is crucial to improve the accuracy of bats identification. This paper presents a deep learning-based model designed for the rapid and precise identification of common horseshoe bats (Chiroptera: Rhinolophidae: Rhinolophus) from Southern China. The model was developed by utilizing a comprehensive dataset of 883 high-resolution images of seven distinct Rhinolophus species which were collected during surveys conducted between 2010 and 2022. An improved EfficientNet model with an attention mechanism module is architected to mine the fine-grained appearance of these Rhinolophus. The performance of the model beat other classical models, including SqueezeNet, AlexNet, VGG16_BN, ShuffleNetV2, GoogleNet, ResNet50 and EfficientNet_B0, according to the predicting precision, recall, accuracy, F1-score. Our model achieved the highest identification accuracy of 94.22% and an F1-score of 0.948 with low computational complexity. Heat maps obtained with Grad-CAM show that our model meets the identification criteria of the morphology of Rhinolophus. Our study highlights the potential of artificial intelligence technology for the identification of small mammals, and facilitating fast species identification in the future.

Funder

Special Foundation for National Science and Technology Basic Research Program of China

National Natural Science Foundation of China

Guangdong Natural Science Funds for Distinguished Young Scholars

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3