Author:
Bu Yuanpeng,Hu Jinxuan,Chen Cheng,Bai Songhang,Chen Zuohui,Hu Tianyu,Zhang Guwen,Liu Na,Cai Chang,Li Yuhao,Xuan Qi,Wang Ye,Su Zhongjing,Xiang Yun,Gong Yaming
Abstract
AbstractThe freshness of vegetable soybean (VS) is an important indicator for quality evaluation. Currently, deep learning-based image recognition technology provides a fast, efficient, and low-cost method for analyzing the freshness of food. The RGB (red, green, and blue) image recognition technology is widely used in the study of food appearance evaluation. In addition, the hyperspectral image has outstanding performance in predicting the nutrient content of samples. However, there are few reports on the research of classification models based on the fusion data of these two sources of images. We collected RGB and hyperspectral images at four different storage times of VS. The ENVI software was adopted to extract the hyperspectral information, and the RGB images were reconstructed based on the downsampling technology. Then, the one-dimensional hyperspectral data was transformed into a two-dimensional space, which allows it to be overlaid and concatenated with the RGB image data in the channel direction, thereby generating fused data. Compared with four commonly used machine learning models, the deep learning model ResNet18 has higher classification accuracy and computational efficiency. Based on the above results, a novel classification model named ResNet-R &H, which is based on the residual networks (ResNet) structure and incorporates the fusion data of RGB and hyperspectral images, was proposed. The ResNet-R &H can achieve a testing accuracy of 97.6%, which demonstrates a significant enhancement of 4.0% and 7.2% compared to the distinct utilization of hyperspectral data and RGB data, respectively. Overall, this research is significant in providing a unique, efficient, and more accurate classification approach in evaluating the freshness of vegetable soybean. The method proposed in this study can provide a theoretical reference for classifying the freshness of fruits and vegetables to improve classification accuracy and reduce human error and variability.
Funder
Key research and development project of Zhejiang Province
Accurate Identification and Evaluation of Crop Germplasm Resources (Soybean) in 2023
Zhejiang Basic Public Welfare Research Project
Zhejiang Provincial Important Science \& Technology Specific Projects of Vegetable Breeding
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献