Correlation among photoluminescence and the electronic and atomic structures of Sr2SiO4:xEu3+ phosphors: X-ray absorption and emission studies

Author:

Zheng Shi-Yan,Chiou Jau-Wern,Li Yueh-Han,Yang Cheng-Fu,Ray Sekhar Chandra,Chen Kuan-Hung,Chang Chun-Yu,Shelke Abhijeet R.,Wang Hsiao-Tsu,Yeh Ping-Hung,Lai Chun-Yen,Hsieh Shang-Hsien,Pao Chih-Wen,Chen Jeng-Lung,Lee Jyh-Fu,Tsai Huang-Ming,Fu Huang-Wen,Hua Chih-Yu,Lin Hong-Ji,Chen Chien-Te,Pong Way-Faung

Abstract

AbstractA series of Eu3+-activated strontium silicate phosphors, Sr2SiO4:xEu3+ (SSO:xEu3+, x = 1.0, 2.0 and 5.0%), were synthesized by a sol–gel method, and their crystalline structures, photoluminescence (PL) behaviors, electronic/atomic structures and bandgap properties were studied. The correlation among these characteristics was further established. X-ray powder diffraction analysis revealed the formation of mixed orthorhombic α'-SSO and monoclinic β-SSO phases of the SSO:xEu3+ phosphors. When SSO:xEu3+ phosphors are excited under ultraviolet (UV) light (λ = 250 nm, ~ 4.96 eV), they emit yellow (~ 590 nm), orange (~ 613 nm) and red (~ 652 and 703 nm) PL bands. These PL emissions typically correspond to 4f–4f electronic transitions that involve the multiple excited 5D0 → 7FJ levels (J = 1, 2, 3 and 4) of Eu3+ activators in the host matrix. This mechanism of PL in the SSO:xEu3+ phosphors is strongly related to the local electronic/atomic structures of the Eu3+–O2− associations and the bandgap of the host lattice, as verified by Sr K-edge and Eu L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure, O K-edge XANES and Kα X-ray emission spectroscopy. In the synthesis of SSO:xEu3+ phosphors, interstitial Eu2O3-like structures are observed in the host matrix that act as donors, providing electrons that are nonradiatively transferred from the Eu 5d and/or O 2p–Eu 4f/5d states (mostly the O 2p–Eu 5d states) to the 5D0 levels, facilitating the recombination of electrons that have transitioned from the 5D0 level to the 7FJ level in the bandgap. This mechanism is primarily responsible for the enhancement of PL emissions in the SSO:xEu3+ phosphors. This PL-related behavior indicates that SSO:xEu3+ phosphors are good light-conversion phosphor candidates for use in near-UV chips and can be very effective in UV-based light-emitting diodes.

Funder

Young Scientists of Quanzhou Normal University

Ministry of Science and Technology (MoST) of Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3