A facile hydrothermal synthesis of high-efficient NiO nanocatalyst for preparation of 3,4-dihydropyrimidin-2(1H)-ones

Author:

Khashaei MaryamORCID,Kafi-Ahmadi LeilaORCID,Khademinia ShahinORCID,Poursattar Marjani AhmadORCID,Nozad EhsanORCID

Abstract

AbstractThe present work introduces a one-step and facile hydrothermal procedure as a green process for the first time to synthesize nickel(II) oxide (NiO) nanoparticles. The as-prepared nanomaterials were used as high efficient, low toxic and cost catalyst for the synthesis of some organic compounds. Ni(NO3)2 and some natural extract were used as a surfactant for the first time to synthesis NiO nanomaterials. A high synthesis yield (91%) was obtained for S2. Rietveld analysis affirmed the cubic crystal system of the obtained NiO nanocatalyst. The morphology studies were carried out with the FESEM method and the images revealed a change from non-homogenous to homogenous spherical particles when the Barberryas was used instead of orange blossom surfactant. Besides, the images revealed that the particle size distribution was in the range of 20 to 60 nm. The synthesized catalysts were used for the first time in Biginelli multicomponent reactions (MCRs) for the preparation of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) under the present facile reaction conditions. High yield (97%) of the final product was achieved at the optimum condensation reaction conditions (Catalyst: 60 mg; temperature: 90 °C and time: 90 min) when ethyl acetoacetate/methyl acetoacetate (1 mmol), benzaldehyde (1 mmol) and urea (1.2 mmol) were used. A kinetic study affirmed pseudo-first-order model for Biginelli reactions followed the pseudo-first-order model.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3