Author:
Batatinha Helena,Tavares-Silva Edgar,Leite Geovana S. F.,Resende Ayane S.,Albuquerque José A. T.,Arslanian Christina,Fock Ricardo A.,Lancha Antônio H.,Lira Fabio S.,Krüger Karsten,Thomatieli-Santos Ronaldo,Rosa-Neto José C.
Abstract
Abstract
Probiotic supplementation arises as playing an immune-stimulatory role. High-intensity and -volume exercise can inhibit immune cell function, which threatens athletic performance and recovery. We hypothesized that 30 days of probiotic supplementation could stabilize the immune system of athletes preventing immune suppression after a marathon race. Twenty-seven male marathonists were double-blinded randomly into probiotic (Bifidobacterium-animalis-subsp.-Lactis (10 × 109) and Lactobacillus-Acidophilus (10 × 109) + 5 g of maltodextrin) and placebo (5 g of maltodextrin) group. They received 30 sachets and supplemented 1 portion/day during 30 days before the race. Blood were collected 30 days before (rest), 1 day before (pre), 1 h after (post) and 5 days after the race (recovery). Both chronic and acute exercise modulated a different T lymphocyte population (CD3+CD4−CD8− T-cells), increasing pre-race, decreasing post and returning to rest values at the recovery. The total number of CD8 T cell and the memory subsets statistically decreased only in the placebo group post-race. Pro-inflammatory cytokine production by stimulated lymphocytes decreased in the probiotic group after the supplementation period. 30 days of probiotic supplementation maintained CD8 T cell and effector memory cell population and played an immunomodulatory role in stimulated lymphocytes. Both, training and marathon modulated a non-classical lymphocyte population regardless of probiotic supplementation.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).
2. Kurashima, Y., Goto, Y. & Kiyono, H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur. J. Immunol. 43, 3108–3115 (2013).
3. Taylor, S. L., Wesselingh, S. & Rogers, G. B. Host-microbiome interactions in acute and chronic respiratory infections. Cell. Microbiol. 18, 652–662 (2016).
4. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
5. Bull, M. J. & Plummer, N. T. Part 1: The human gut microbiome in health and disease. Integr. Med. Encinitas Calif. 13, 17–22 (2014).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献