Chemotherapy-induced neuroinflammation is associated with disrupted colonic and bacterial homeostasis in female mice

Author:

Loman B. R.ORCID,Jordan K. R.,Haynes B.,Bailey M. T.,Pyter L. M.

Abstract

Abstract Chemotherapy treatment negatively affects the nervous and immune systems and alters gastrointestinal function and microbial composition. Outside of the cancer field, alterations in commensal bacteria and immune function have been implicated in behavioral deficits; however, the extent to which intestinal changes are related to chemotherapy-associated behavioral comorbidities is not yet known. Thus, this study identified concurrent changes in behavior, central and peripheral immune activation, colon histology, and bacterial community structure in mice treated with paclitaxel chemotherapy. In paclitaxel-treated mice, increased fatigue and decreased cognitive performance occurred in parallel with reduced microglia immunoreactivity, increased circulating chemokine expression (CXCL1), as well as transient increases in pro-inflammatory cytokine/chemokine (Il-1β, Tnfα, Il-6, and Cxcl1) gene expression in the brain. Furthermore, mice treated with paclitaxel had altered colonic bacterial community composition and increased crypt depth. Relative abundances of multiple bacterial taxa were associated with paclitaxel-induced increases in colon mass, spleen mass, and microglia activation. Although microbial community composition was not directly related to available brain or behavioral measures, structural differences in colonic tissue were strongly related to microglia activation in the dentate gyrus and the prefrontal cortex. These data indicate that the chemotherapeutic paclitaxel concurrently affects the gut microbiome, colonic tissue integrity, microglia activation, and fatigue in female mice, thus identifying a novel relationship between colonic tissue integrity and behavioral responses that is not often assessed in studies of the brain-gut-microbiota axis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3