Clubroot resistance derived from the European Brassica napus cv. ‘Tosca’ is not effective against virulent Plasmodiophora brassicae isolates from Alberta, Canada

Author:

Fredua-Agyeman Rudolph,Hwang Sheau-Fang,Zhang Hui,Falak Igor,Huang Xiuqiang,Strelkov Stephen E.

Abstract

AbstractIn this study, clubroot resistance in the resynthesized European winter Brassica napus cv. ‘Tosca’ was introgressed into a Canadian spring canola line ‘11SR0099’, which was then crossed with the clubroot susceptible spring line ‘12DH0001’ to produce F1 seeds. The F1 plants were used to develop a doubled haploid (DH) mapping population. The parents and the DH lines were screened against ‘old’ pathotypes 2F, 3H, 5I, 6M and 8N of the clubroot pathogen, Plasmodiophora brassicae, as well as against the ‘new’ pathotypes 5X, 5L, 2B, 3A, 3D, 5G, 8E, 5C, 8J, 5K, 3O and 8P. Genotyping was conducted using a Brassica 15K SNP array. The clubroot screening showed that ‘Tosca, ‘11SR0099’ and the resistant DH lines were resistant to three (2F, 3H and 5I) of the five ‘old’ pathotypes and four (2B, 3O, 8E and 8P) of the 12 ‘new’ pathotypes, while being moderately resistant to the ‘old’ pathotype 8N and the ‘new’ pathotypes 3D and 5G. ‘Tosca’ was susceptible to isolates representing pathotype 3A (the most common among the ‘new’ pathotypes) as well as pathotypes 6M, 5X, 5L, 5K and 8J. Linkage analysis and QTL mapping identified a ca. 0.88–0.95 Mb genomic region on the A03 chromosome of ‘Tosca’ as conferring resistance to pathotypes 2F, 3H, 5I, 2B, 3D, 5G, 8E, 3O and 8P. The identified QTL genomic region housed the CRk, Crr3 and CRd gene(s). However, the susceptibility of ‘Tosca’ to most of the common virulent pathotypes makes it unattractive as a sole CR donor in the breeding of commercial canola varieties in western Canada.

Funder

Alberta Crop Industry Development Fund

Canadian Agricultural Partnership (CAP) Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference53 articles.

1. Canola Digest. Canola Market Snapshot 2019. https://canoladigest.ca/november-2019/canola-market-snapshot-2019/. Accessed 5 Dec 2020.

2. Busch, L., Gunter, V., Mentele, T., Tachikawa, M. & Tanaka, K. Socializing nature: Technoscience and the transformation of rapeseed into canola. Crop Sci. 34, 607–614 (1994).

3. Rakow, G. Dedication: Richard K. Downey-designer of Canola. Plant Breed. Rev. 18, 1–12 (2000).

4. Canola Council of Canada. Markets and statistics. Canola industry at a glance. https://www.canolacouncil.org/markets-stats/. Accessed 5 Dec 2020.

5. Li, H., Sivasithamparam, K. & Barbetti, M. J. Breakdown of Brassica rapa subsp. sylvestris single dominant blackleg resistance gene in Brassica napus rapeseed by Leptosphaeria maculans field isolates in Australia. Plant Dis. 87(6), 752 (2003).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3