Multi-Domain Negative Capacitance Effects in Metal-Ferroelectric-Insulator-Semiconductor/Metal Stacks: A Phase-field Simulation Based Study

Author:

Saha Atanu K.,Gupta Sumeet K.

Abstract

AbstractWe analyze the ferroelectric domain-wall induced negative capacitance (NC) effect in Metal-FE-Insulator-Metal (MFIM) and Metal-FE-Insulator-Semiconductor (MFIS) stacks through phase-field simulations by self-consistently solving time-dependent Ginzburg Landau equation, Poisson’s equation and semiconductor charge equations. Considering Hf0.5Zr0.5O2 as the ferroelectric material, we study 180° ferroelectric domain formation in MFIM and MFIS stacks and their polarization switching characteristics. Our analysis signifies that the applied voltage-induced polarization switching via soft domain-wall displacement exhibits non-hysteretic characteristics. In addition, the change in domain-wall energy, due to domain-wall displacement, exhibits a long-range interaction and thus, leads to a non-homogeneous effective local negative permittivity in the ferroelectric. Such effects yield an average negative effective permittivity that further provides an enhanced charge response in the MFIM stack, compared to Metal-Insulator-Metal. Furthermore, we show that the domain-wall induced negative effective permittivity is not an intrinsic property of the ferroelectric material and therefore, is dependent on its thickness, the gradient energy coefficient and the in-plane permittivity of the underlying insulator. Similar to the MFIM stack, MFIS stack also exhibits an enhanced charge/capacitance response compared to Metal-Oxide-Semiconductor (MOS) capacitor. Simultaneously, the multi-domain state of the ferroelectric induces non-homogeneous potential in the underlying insulator and semiconductor layer. At low applied voltages, such non-homogeneity leads to the co-existence of electrons and holes in an undoped semiconductor. In addition, we show that with the ferroelectric layer being in the 180° multi-domain state, the minimum potential at the ferroelectric-dielectric interface and hence, the minimum surface potential in the semiconductor, does not exceed the applied voltage (in-spite of the local differential amplification and charge enhancement).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3