Author:
Stroulios Georgios,Brown Tyler,Moreni Giulia,Kondro Douglas,Dei Alessandro,Eaves Allen,Louis Sharon,Hou Juan,Chang Wing,Pajkrt Dasja,Wolthers Katja C.,Sridhar Adithya,Simmini Salvatore
Abstract
AbstractAirway organoids are polarized 3D epithelial structures that recapitulate the organization and many of the key functions of the in vivo tissue. They present an attractive model that can overcome some of the limitations of traditional 2D and Air–Liquid Interface (ALI) models, yet the limited accessibility of the organoids’ apical side has hindered their applications in studies focusing on host–pathogen interactions. Here, we describe a scalable, fast and efficient way to generate airway organoids with the apical side externally exposed. These apical-out airway organoids are generated in an Extracellular Matrix (ECM)-free environment from 2D-expanded bronchial epithelial cells and differentiated in suspension to develop uniformly-sized organoid cultures with robust ciliogenesis. Differentiated apical-out airway organoids are susceptible to infection with common respiratory viruses and show varying responses upon treatment with antivirals. In addition to the ease of apical accessibility, these apical-out airway organoids offer an alternative in vitro model to study host–pathogen interactions in higher throughput than the traditional air–liquid interface model.
Funder
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献