Using augmented reality to guide bone conduction device implantation

Author:

Lui Justin T.,Dahm Valerie,Chen Joseph M.,Lin Vincent Y.,Irish Jonathan C.,Le Trung N.,Chan Harley H. L.

Abstract

AbstractExact placement of bone conduction implants requires avoidance of critical structures. Existing guidance technologies for intraoperative placement have lacked widespread adoption given accessibility challenges and significant cognitive loading. The purpose of this study is to examine the application of augmented reality (AR) guided surgery on accuracy, duration, and ease on bone conduction implantation. Five surgeons surgically implanted two different types of conduction implants on cadaveric specimens with and without AR projection. Pre- and postoperative computer tomography scans were superimposed to calculate centre-to-centre distances and angular accuracies. Wilcoxon signed-rank testing was used to compare centre-to-centre (C-C) and angular accuracies between the control and experimental arms. Additionally, projection accuracy was derived from the distance between the bony fiducials and the projected fiducials using image guidance coordinates. Both operative time (4.3 ± 1.2 min. vs. 6.6 ± 3.5 min., p = 0.030) and centre-to-centre distances surgery (1.9 ± 1.6 mm vs. 9.0 ± 5.3 mm, p < 0.001) were significantly less in augmented reality guided surgery. The difference in angular accuracy, however, was not significantly different. The overall average distance between the bony fiducial markings and the AR projected fiducials was 1.7 ± 0.6 mm. With direct intraoperative reference, AR-guided surgery enhances bone conduction implant placement while reduces operative time when compared to conventional surgical planning.

Funder

P. Austin Family Foundation GTx

Dorrance Drummond Family Fund

Garron Foundation

Strobele Family Guided Therapeutics Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3