Sedimentological and petrophysical characterization of the Bokabil Formation in the Surma Basin for CO2 storage capacity estimation

Author:

Hossain Shakhawat,Rahman Naymur,Shekhar Himadri

Abstract

AbstractLarge-scale geological sequestration of CO2 is one of the most effective strategies to limit global warming to below 2 °C, as recommended by the Intergovernmental Panel on Climate Change (IPCC). Therefore, identifying and characterizing high-quality storage units is crucial. The Surma Basin, with its four-way dip closed structures, high-quality reservoirs, and thick regional cap rocks, is an ideal location for CO2 storage. This study focuses on the Bokabil Formation, the most prominent reservoir unit in the Surma Basin. Detailed petrographic, petrophysical, XRD, and SEM analyses, along with mapping, have been conducted to evaluate the properties of the reservoir and cap rock within this formation. The Upper Bokabil Sandstone in the Surma Basin ranges from 270 to 350 m in thickness and consists of fine- to medium-grained subarkosic sandstones composed of 70–85% quartz and 5–12% feldspar, with good pore connectivity. Petrophysical analysis of data from four gas fields indicates that this unit has a total porosity of 21–27.4% and a low shale volume of 15–27%. Cross plots and outcrop observations suggest that most of the shales are laminated within the reservoir. The regional cap rock, known as the Upper Marine Shale (UMS), ranges in thickness from 40 to 190 m and contains 10–40 nm nano-type pores. A higher proportion of ductile materials with a significant percentage of quartz in the UMS indicates higher capillary entry pressures, enhancing its capacity to hold CO2. Using the CSLF method with a 6% cut-off of the available pore volume, it is estimated that 103 Mt, 110 Mt, 205 Mt, and 164 Mt of CO2 can be effectively stored in the Sylhet, Kailashtila, Habiganj, and Fenchuganj structures, respectively. Due to the shallow depth of the storage unit and the thick cap rock, the southern Surma Basin is the optimal location for CO2 injection.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3