Improving prediction of heart transplantation outcome using deep learning techniques
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://www.nature.com/articles/s41598-018-21417-7.pdf
Reference24 articles.
1. Klein, A. S. et al. Organ donation and utilization in the United States, 1999–2008. Am J Transplant 10, 973–986, https://doi.org/10.1111/j.1600-6143.2009.03008.x (2010).
2. Nilsson, J., Algotsson, L., Höglund, P., Lührs, C. & Brandt, J. Comparison of 19 pre-operative risk stratification models in open-heart surgery. Eur Heart J 27, 867–874, https://doi.org/10.1093/eurheartj/ehi720 (2006).
3. Weiss, E. S. et al. Development of a quantitative donor risk index to predict short-term mortality in orthotopic heart transplantation. The Journal of Heart and Lung Transplantation 31, 266–273 (2012).
4. Hong, K. N. et al. Who is the high-risk recipient? Predicting mortality after heart transplant using pretransplant donor and recipient risk factors. The Annals of thoracic surgery 92, 520–527 (2011).
5. Weiss, E. S. et al. Creation of a Quantitative Recipient Risk Index for Mortality Prediction After Cardiac Transplantation (IMPACT). The Annals of Thoracic Surgery 92, 914–922 (2011).
Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Importance of Transplant Era on Post–Heart Transplant Predictive Models: A UNOS Cohort Analysis;Clinical Transplantation;2024-07
2. Artificial Intelligence Approaches for Predicting the Risks of Durable Mechanical Circulatory Support Therapy and Cardiac Transplantation;Journal of Clinical Medicine;2024-04-03
3. Building analytical models for predicting de novo malignancy in pancreas transplant patients: A machine learning approach;Expert Systems with Applications;2024-03
4. An Update on the Use of Artificial Intelligence in Cardiovascular Medicine;Hearts;2024-02-09
5. Artificial intelligence in heart failure and transplant;Artificial Intelligence in Clinical Practice;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3