An integrated remote sensing, petrology, and field geology analyses for Neoproterozoic basement rocks in some parts of the southern Egyptian-Nubian Shield

Author:

El-Desoky Hatem M.,Bachri Imane,El Mezayen Ahmed M.,Abdel-Rahman Ahmed M.,El-Awny Hamada,El-Gammal Arafa A.,Alshehri Fahad,Almadani Sattam

Abstract

AbstractThe main objective of this study was to use deep learning, and convolutional neural networks (CNN), integrated with field geology to identify distinct lithological units. The Samadia-Tunduba region of the South Eastern Desert of Egypt was mapped geologically for the first time thanks to the use of processed developed CNN algorithms using Landsat 9 OLI-2, which were further enhanced by geological fieldwork, spectral measurements of field samples, and petrographic examination. According to previously published papers, a significant difference was observed in the distribution of rocks and their boundaries, as well as the previously published geological maps that were not accurately compatible with the nature of the area. The many lithologic units in the region are refined using principal component analysis, color ratio composites, and false-color composites. These techniques demonstrated the ability to distinguish between various igneous and metamorphic rock types, especially metavolcanics, metasediments, granodiorite, and biotite monzogranite. The Key structural trends, lithological units, and wadis affecting the area under study are improved by the principal component analysis approach (PC 3, 2, 1), (PC 2, 3, 4), (PC 4, 3, 2), (PC 5, 4, 3), and (PC 6, 5, 4) in RGB, respectively. The best band ratios recorded in the area are recorded the good discrimination (6/5, 4/3, and 2/1), (4/2, 6/7, and 5/6), and (3/2, 5/6, and 4/6) for RGB. The classification map achieved an overall accuracy of 95.27%, and these results from Landsat-9 data were validated by field geology and petrographical studies. The results of this survey can make a significant difference to detailed geological studies. A detailed map of the new district has been prepared through a combination of deep learning and fieldwork.

Funder

Abdullah Alrushaid Chair for Earth Science Remote Sensing Research at King Saud University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3