Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application

Author:

Mosa Walid F. A.,El-Shehawi Ahmed M.,Mackled Marwa I.,Salem Mohamed Z. M.,Ghareeb Rehab Y.,Hafez Elsayed E.,Behiry Said I.,Abdelsalam Nader R.

Abstract

AbstractThe current study was performed on eight years old peach (Prunus persica L. Batsch) trees cv. Florida prince to study the influence of spraying of commercial nano fertilizer on vegetative growth, pollen grain viability, yield, and fruit quality of the "Florida prince" peach cultivar. Furthermore, extracts from the nanofertilizer treated leaves were studied for their bioactivity as insecticidal or bactericidal activities against some stored grain insects and plant bacterial pathogens. Seventy uniform peach trees were sprayed three time as follow: before flowering; during full bloom, and one month later in addition using the water as a control. Commercial silver particales (Ag NPs) at 10, 12.5, and 15 mL/L and zinc particales (Zn NPs) at 2.5, 5 and 7.5 mL/L as recommended level in a randomized complete block design in ten replicates/trees. Spraying Ag NP at 15 mL/L increased shoot diameter, leaf area, total chlorophyll, flower percentage, fruit yield and fruit physical and chemical characteristics, followed by Ag NPs at 12.5 mL/L and Zn NPs at 7.5 mL/L. Moreover, Zn and Ag NPs caused a highly significant effect on pollen viability. Different type of pollen aberrations were detected by Zn NPs treatment. The commercial Ag NPs showed a high increase in pollen viability without any aberrations. The Ag NPs significantly increased the pollen size, and the spores also increased and separated in different localities, searching about the egg for pollination and fertilization. Peach leaves extract was examined for their insecticidal activity against rice weevil (Sitophilus oryzea L.) and the lesser grain borer (Rhyzopertha dominica, Fabricius) by fumigation method. The antibacterial activity of all treatments was also performed against molecularly identified bacteria. Ag NPs treated leaves extract at concentration 3000 µg/mL were moderate sufficient to inhibit all the bacterial isolates with inhibition zone (IZ) ranged 6–8.67 mm with high efficiency of acetone extracts from leaves treated with Ag NPs compared with Zn NPs. Also, S. oryzae was more susceptible to acetone extracts from leaves treated with both nanomaterials than R. dominica.

Funder

Taif University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference147 articles.

1. FAO, I. & UNICEF. The state of food security and nutrition in the world 2019. Safeguarding against economic slowdowns and downturns. . (2019).

2. Selivanov, V. & Zorin, E. Sustained action of ultrafine metal powders on seeds of grain crops. Perspekt. Materialy 4, 66–69 (2001).

3. Raikova, O., Panichkin, L. & Raikova, N. in Proceedings of the International Scientific and Practical Conference. 108–111.

4. Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M. & Rahale, C. S. in Nanotechnologies in food and agriculture 69–80 (Springer, 2015).

5. Abdelsalam, N. R. et al. Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion. Int. J. Biol. Macromol. 133, 1008–1018 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3