Author:
O’Brien Gareth Shane,Bean Christopher J.,Meiland Hugo,Witte Philipp
Abstract
AbstractDespite advances in seismology and computing, the ability to image subsurface volcanic environments is poor, limiting our understanding of the overall workings of volcanic systems. This is related to substantive structural heterogeneities which strongly scatters seismic waves obscuring the ballistic arrivals normally used in seismology for wave velocity determination. Here we address this constraint by, using a deep learning approach, a Fourier neural operator (FNO), to model and invert seismic signals in volcanic settings. The FNO is trained using 40,000+ simulations of elastic wave propagation through complex volcano models, and includes the full scattered wavefield. Once trained, the forward network is used to predict elastic wave propagation and is shown to accurately reproduce the seismic wavefield. The FNO is also trained to predict heterogeneous velocity models given a limited set of input seismograms. It is shown to capture details of the complex velocity structure that lie far outside the ability of current methods available in volcano imagery.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. McNutt, S. R. Volcanic seismology. Annu. Rev. Earth Planet. Sci. 32, 461–491 (2005).
2. Wassermann, J. in IASPEI New Manual of Seismological Observatory Practice (NMSOP) Vol. 1 (ed. Bormann, P.) (GeoForschungsZentrum Potsdam, 2002).
3. Chouet, B. A. in Volcanic Seismology (eds Gasparini, P., Scarpa, R. & Aki, K.) 133–156 (Springer, 1992).
4. Chouet, B. & Julian, B. R. Dynamic of an expanding fluid-filled crack. J. Geophys. Res. 90, 11187–11198 (1985).
5. Neuberg, J., Luckett, R., Baptie, V. & Olsen, K. Models of tremor and low-frequency earthquake swarms on Montserrat. J. Volcanol. Geotherm. Res. 101, 83–104 (2000).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献