Two-dimensional ECG-based cardiac arrhythmia classification using DSE-ResNet

Author:

Li Jiahao,Pang Shao-peng,Xu Fangzhou,Ji Peng,Zhou Shuwang,Shu Minglei

Abstract

AbstractElectrocardiogram (ECG) is mostly used for the clinical diagnosis of cardiac arrhythmia due to its simplicity, non-invasiveness, and reliability. Recently, many models based on the deep neural networks have been applied to the automatic classification of cardiac arrhythmia with great success. However, most models independently extract the internal features of each lead in the 12-lead ECG during the training phase, resulting in a lack of inter-lead features. Here, we propose a general model based on the two-dimensional ECG and ResNet with detached squeeze-and-excitation modules (DSE-ResNet) to realize the automatic classification of normal rhythm and 8 cardiac arrhythmias. The original 12-lead ECG is spliced into a two-dimensional plane like a grayscale picture. DSE-ResNet is used to simultaneously extract the internal and inter-lead features of the two-dimensional ECG. Furthermore, an orthogonal experiment method is used to optimize the hyper-parameters of DSE-ResNet and a multi-model voting strategy is used to improve classification performance. Experimental results based on the test set of China Physiological Signal Challenge 2018 (CPSC2018) show that our model has average $$F_1= 0.817$$ F 1 = 0.817 for classifying normal rhythm and 8 cardiac arrhythmias. Meanwhile, compared with the state-of-art model in CPSC2018, our model achieved the best $$F_1$$ F 1 in 2 sub-abnormal types. This shows that the model based on the two-dimensional ECG and DSE-ResNet has advantage in detecting some cardiac arrhythmias and has the potential to be used as an auxiliary tool to help doctors perform cardiac arrhythmias analysis.

Funder

National Natural Science Foundation of China

Young doctorate Cooperation Fund Project of Qilu University of Technology

Program for Youth Innovative Research Team in the University of Shandong Province in China

Graduate Education and Teaching Reform Research Project of Qilu University of Technology in 2019

Youth Innovation Science and Technology Support Plan of Colleges in Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3