Live imaging of micro and macro wettability variations of carbonate oil reservoirs for enhanced oil recovery and CO2 trapping/storage

Author:

Ivanova A.,Orekhov A.,Markovic S.,Iglauer S.,Grishin P.,Cheremisin A.

Abstract

AbstractCarbonate hydrocarbon reservoirs are considered as potential candidates for chemically enhanced oil recovery and for CO2 geological storage. However, investigation of one main controlling parameter—wettability—is usually performed by conventional integral methods at the core-scale. Moreover, literature reports show that wettability distribution may vary at the micro-scale due to the chemical heterogeneity of the reservoir and residing fluids. These differences may profoundly affect the derivation of other reservoir parameters such as relative permeability and capillary pressure, thus rendering subsequent simulations inaccurate. Here we developed an innovative approach by comparing the wettability distribution on carbonates at micro and macro-scale by combining live-imaging of controlled condensation experiments and X-ray mapping with sessile drop technique. The wettability was quantified by measuring the differences in contact angles before and after aging in palmitic, stearic and naphthenic acids. Furthermore, the influence of organic acids on wettability was examined at micro-scale, which revealed wetting heterogeneity of the surface (i.e., mixed wettability), while corresponding macro-scale measurements indicated hydrophobic wetting properties. The thickness of the adsorbed acid layer was determined, and it was correlated with the wetting properties. These findings bring into question the applicability of macro-scale data in reservoir modeling for enhanced oil recovery and geological storage of greenhouse gases.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3