Vertical tunneling FET with Ge/Si doping-less heterojunction, a high-performance switch for digital applications

Author:

Cherik Iman Chahardah,Mohammadi Saeed,Maity Subir Kumar

Abstract

AbstractA vertical tunneling field effect transistor composed of a doping-less tunneling heterojunction and an n+-drain is presented in this paper. Two highly-doped p+ silicon layers are devised to induce holes in an intrinsic source region. Due to employing a double gate configuration and Hafnium in the gate oxide, our proposed structure has an optimized electrostatic control over the channel. We have performed all the numerical simulations using Silvaco ATLAS, calibrated to the verified data of a device with the similar working principle. The impact of the wide range of non-idealities, such as trap-assisted tunneling, interface trap charges, and ambipolar conduction, is thoroughly investigated. We have also evaluated the impact of negative capacitance material to further improve our device switching characteristics. Introducing both n-channel and p-channel devices, and employing them into a 6T SRAM circuit, we have investigated its performance in terms of parameters like read and write SNM. The FOMs such as Ion = 34.4 µA/µm, Ion/Ioff = 7.17 × 107, and fT = 123 GHz show that our proposed device is a notable candidate for both DC and RF applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3