Critical assessment of furrow openers and operational parameters for optimum performance under conservation tillage

Author:

Madhusudan B. S.,Kushwaha H. L.,Kumar Adarsh,Parray Roaf Ahmad,Swain Sidhartha Sekhar,Chowdhury Manojit,Nag Ramineni Harsha,Asha K. R.,Rathod Sunil Kumar,Kumar Pradeep,Anand Rohit,Al-Ansari NadhirORCID,Dewidar Ahmed Z.,Mattar Mohamed A.

Abstract

AbstractConservation Agriculture (CA) is an innovative approach that promotes sustainable farming while enhancing soil health. However, residue management challenges often hinder its adoption, causing farmers to burn crop leftovers in fields. This study aimed to evaluate the effectiveness of various furrow openers under simulated soil bin conditions. Three types of furrow openers were examined: single disk (SD), Inverted T-type furrow opener with a plain rolling coulter (ITRC), and double disc (DD) furrow opener. Tests were conducted at different forward speeds (1.5, 2, and 2.5 km h−1) and with three straw densities (1, 2, and 3 t ha−1) at a consistent working depth of 5 cm. Draft measurements were obtained using load cells connected to an Arduino-based data-logging system. Results indicated that draft requirements increased with forward speed and straw density, while straw-cutting efficiency decreased with these factors. Average draft values for SD, ITRC, and DD were 290.3 N, 420 N, and 368.5 N, respectively, and straw-cutting efficiencies were 53.62%, 59.47%, and 74.89%, respectively. The DD furrow opener showed the highest straw-cutting efficiency (81.36%) at a working speed of 1.5 km h−1 and a straw density of 1 t ha−1, demonstrating optimal performance compared to other furrow openers.

Funder

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3