Adaptive attention-based human machine interface system for teleoperation of industrial vehicle

Author:

Chew Jouh Yeong,Kawamoto Mitsuru,Okuma Takashi,Yoshida Eiichi,Kato Norihiko

Abstract

AbstractThis study proposes a Human Machine Interface (HMI) system with adaptive visual stimuli to facilitate teleoperation of industrial vehicles such as forklifts. The proposed system estimates the context/work state during teleoperation and presents the optimal visual stimuli on the display of HMI. Such adaptability is supported by behavioral models which are developed from behavioral data of conventional/manned forklift operation. The proposed system consists of two models, i.e., gaze attention and work state transition models which are defined by gaze fixations and operation pattern of operators, respectively. In short, the proposed system estimates and shows the optimal visual stimuli on the display of HMI based on temporal operation pattern. The usability of teleoperation system is evaluated by comparing the perceived workload elicited by different types of HMI. The results suggest the adaptive attention-based HMI system outperforms the non-adaptive HMI, where the perceived workload is consistently lower as responded by different categories of forklift operators.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Joint Attention Estimation during Multi-party Facilitation Using Multi-Modal Fusion;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

2. Human States and Nonverbal Cues in Multi-party Facilitation: A Statistical Perspective;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

3. Who to Teach a Robot to Facilitate Multi-party Social Interactions?;Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction;2023-03-13

4. Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability;npj Flexible Electronics;2022-07-18

5. Multi-modal approach to evaluate adaptive visual stimuli of remote operation system using gaze behavior;International Journal of Industrial Ergonomics;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3