Dual-energy computed tomography as a lower radiation dose alternative to perfusion computed tomography in tumor viability assessment

Author:

Zegadło Arkadiusz,Różyk Aleksandra,Żabicka Magdalena,Więsik–Szewczyk Ewa,Maliborski Artur

Abstract

AbstractTo present the utility of dual-energy computed tomography (DECT) in the assessment of angiogenesis of focal lesions as an example of a solitary pulmonary nodule (SPN). This prospective study comprised 28 patients with SPN who underwent DECT and perfusion computed tomography (CTP), according to a proprietary protocol. Two radiologists independently analyzed four perfusion parameters, namely blood flow (BF), blood volume (BV), the time to maximum of the tissue residue function (Tmax), permeability surface area product (PS) from CTP, in addition to the iodine concentration (IC) and normalized iodine concentration (NIC) of the SPN from DECT. We used the Pearson R correlation and interclass correlation coefficients (ICCs). Statistical significance was assumed at p < 0.05. The mean tumor size was 23.5 ± 6.5 mm. We observed good correlations between IC and BF (r = 0.78, p < 0.000) and NIC and BF (r = 0.71, p < 0.000) as well as between IC and BV (r = 0.73, p < 0.000) and NIC and BV (r = 0.73, p < 0.000) and poor correlation between IC and PS (r = 0.38, p = 0.044).There was no correlation between NIC and PS (r = 0.35, p = 0.064), IC content and Tmax (r = − 0.28, p = 0.147) and NIC and Tmax (r = − 0.21, p = 0.266). Inter-reader agreement on quantitative parameters at CTP (ICCPS = 0.97, ICCTmax = 0.96, ICCBV = 0.98, and ICCBF = 0.99) and DECT (ICCIC = 0.98) were excellent. The radiation dose was significantly lower in DECT than that in CTP (4.84 mSv vs. 9.07 mSv, respectively). DECT is useful for the functional assessment of oncological lesions with less exposure to radiation compared to perfusion computed tomography.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3