Deep learning restores speech intelligibility in multi-talker interference for cochlear implant users

Author:

Borjigin Agudemu,Kokkinakis Kostas,Bharadwaj Hari M.,Stohl Joshua S.

Abstract

AbstractCochlear implants (CIs) do not offer the same level of effectiveness in noisy environments as in quiet settings. Current single-microphone noise reduction algorithms in hearing aids and CIs only remove predictable, stationary noise, and are ineffective against realistic, non-stationary noise such as multi-talker interference. Recent developments in deep neural network (DNN) algorithms have achieved noteworthy performance in speech enhancement and separation, especially in removing speech noise. However, more work is needed to investigate the potential of DNN algorithms in removing speech noise when tested with listeners fitted with CIs. Here, we implemented two DNN algorithms that are well suited for applications in speech audio processing: (1) recurrent neural network (RNN) and (2) SepFormer. The algorithms were trained with a customized dataset ($$\sim$$ 30 h), and then tested with thirteen CI listeners. Both RNN and SepFormer algorithms significantly improved CI listener’s speech intelligibility in noise without compromising the perceived quality of speech overall. These algorithms not only increased the intelligibility in stationary non-speech noise, but also introduced a substantial improvement in non-stationary noise, where conventional signal processing strategies fall short with little benefits. These results show the promise of using DNN algorithms as a solution for listening challenges in multi-talker noise interference.

Funder

National Institute on Deafness and Other Communication Disorders

MED-EL

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3