Effects of neighboring transitions on the mechanisms of electromagnetically induced absorption and transparency in an open degenerate multilevel system

Author:

Jadoon Zeeshan Ali Safdar,Noh Heung-Ryoul,Kim Jin-Tae

Abstract

AbstractIn this study, optical Bloch equations with and without neighboring hyperfine states near the degenerate two-level system (DTLS) in the challenging case of $$^{85}$$ 85 Rb D2 transition, which involves the Doppler broadening effect, are solved. The calculated spectra agree well with the experimental results obtained based on the coupling-probe scheme with orthogonal linear polarizations of the coupling and probe fields. The mechanisms of electromagnetically induced absorption (electromagnetically induced transparency) for the open $$F_g=3 \rightarrow F_e=2$$ F g = 3 F e = 2 and 3 transitions (open $$F_g=2 \rightarrow F_e=2$$ F g = 2 F e = 2 and 3 transitions) are determined to be the effect of the strong closed $$F_g=3 \rightarrow F_e=4$$ F g = 3 F e = 4 transition line (strong closed $$F_g=2 \rightarrow F_e=1$$ F g = 2 F e = 1 transition line); this finding is based on a comparison between the calculated absorption profiles of the DTLS without neighboring states and those of all levels with neighboring states, depending on the coupling and probe power ratios. Furthermore, based on the aforementioned comparison, the crucial factors that enhance or reduce the coherence effects and lead to the transformation between electromagnetically induced absorption and electromagnetically induced transparency, are (1) the power ratios between the coupling and probe beams, (2) the openness of the excited state, and (3) effects of the neighboring states due to Doppler broadening in a real atomic system.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3