Construction of a predictive model for blood transfusion in patients undergoing total hip arthroplasty and identification of clinical heterogeneity

Author:

Deng Jicai,Zhou Chenxing,Xiao Fei,Chen Jing,Li Chunlai,Xie Yubo

Abstract

AbstractA precise forecast of the need for blood transfusions (BT) in patients undergoing total hip arthroplasty (THA) is a crucial step toward the implementation of precision medicine. To achieve this goal, we utilized supervised machine learning (SML) techniques to establish a predictive model for BT requirements in THA patients. Additionally, we employed unsupervised machine learning (UML) approaches to identify clinical heterogeneity among these patients. In this study, we recruited 224 patients undergoing THA. To identify factors predictive of BT during the perioperative period of THA, we employed LASSO regression and the random forest (RF) algorithm as part of supervised machine learning (SML). Using logistic regression, we developed a predictive model for BT in THA patients. Furthermore, we utilized unsupervised machine learning (UML) techniques to cluster THA patients who required BT based on similar clinical features. The resulting clusters were subsequently visualized and validated. We constructed a predictive model for THA patients who required BT based on six predictive factors: Age, Body Mass Index (BMI), Hemoglobin (HGB), Platelet (PLT), Bleeding Volume, and Urine Volume. Before surgery, 1 h after surgery, 1 day after surgery, and 1 week after surgery, significant differences were observed in HGB and PLT levels between patients who received BT and those who did not. The predictive model achieved an AUC of 0.899. Employing UML, we identified two distinct clusters with significantly heterogeneous clinical characteristics. Age, BMI, PLT, HGB, bleeding volume, and urine volume were found to be independent predictors of BT requirement in THA patients. The predictive model incorporating these six predictors demonstrated excellent predictive performance. Furthermore, employing UML enabled us to classify a heterogeneous cohort of THA patients who received BT in a meaningful and interpretable manner.

Funder

Guangxi Clinical Research Center for Anesthesiology

the Key Project of Natural Science Foundation of Guangxi

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3