A denoising framework for 3D and 2D imaging techniques based on photon detection statistics

Author:

Dodda Vineela Chandra,Kuruguntla Lakshmi,Elumalai Karthikeyan,Chinnadurai Sunil,Sheridan John T,Muniraj Inbarasan

Abstract

AbstractA method to capture three-dimensional (3D) objects image data under extremely low light level conditions, also known as Photon Counting Imaging (PCI), was reported. It is demonstrated that by combining a PCI system with computational integral imaging algorithms, a 3D scene reconstruction and recognition is possible. The resulting reconstructed 3D images often look degraded (due to the limited number of photons detected in a scene) and they, therefore, require the application of superior image restoration techniques to improve object recognition. Recently, Deep Learning (DL) frameworks have been shown to perform well when used for denoising processes. In this paper, for the first time, a fully unsupervised network (i.e., U-Net) is proposed to denoise the photon counted 3D sectional images. In conjunction with classical U-Net architecture, a skip block is used to extract meaningful patterns from the photons counted 3D images. The encoder and decoder blocks in the U-Net are connected with skip blocks in a symmetric manner. It is demonstrated that the proposed DL network performs better, in terms of peak signal-to-noise ratio, in comparison with the classical TV denoising algorithm.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3