Analyzing bifurcation, stability, and wave solutions in nonlinear telecommunications models using transmission lines, Hamiltonian and Jacobian techniques

Author:

Refaie Ali Ahmed,Roshid Harun Or,Islam Shariful,Khatun Asma

Abstract

AbstractThis study presents a comprehensive analysis of a nonlinear telecommunications model, exploring bifurcation, stability, and wave solutions using Hamiltonian and Jacobian techniques. The investigation begins with a thorough examination of bifurcation behavior, identifying critical points and their stability characteristics, leading to the discovery of diverse bifurcation scenarios. The stability of critical points is further assessed through graphical and numerical methods, highlighting the sensitivity to parameter variations. The study delves into the derivation of both numerical and analytical wave solutions, aligning them with energy orbits depicted in phase portraits, revealing a spectrum of wave behaviors. Additionally, the analysis extends to traveling wave solutions, providing insights into wave propagation dynamics. Notably, the study underscores the efficacy of the planar dynamical approach in capturing system behavior in harmony with phase portrait orbits. The findings have significant implications for telecommunications engineers and researchers, offering insights into system behavior, stability, and signal propagation, ultimately advancing our understanding of complex nonlinear dynamics in telecommunications networks.

Funder

Science and Technology Development Fund

Minufiya University

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Brockedone, W. Cooke and Wheatstone and the Invention of the Electric Telegraph. ISBN 9780415846783 (11 March 2013).

2. Levi, W. The Pigeon. Sumter, SC: Levi Publishing Co, Inc. ISBN 978-0-85390-013-9 (1977).

3. Blechman, A. Pigeons—The fascinating saga of the world’s most revered and reviled bird. St Lucia, Queensland: University of Queensland Press. ISBN 978-0-7022-3641-9 (2007). Archived from the original on 14 May 2008.

4. Song, M., Wang, B. & Cao, J. Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation. Chin. Phys. B 29(10), 100206 (2020).

5. Baskonus, H. M., Guirao, J. L. G., Kumar, A., Causanilles, F. S. V., & Bermudez, G. R. Regarding new traveling wave solutions for the mathematical model arising in telecommunications. Adv. Math. Phys. (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3