Role of Molecular Orbital Energy Levels in OLED Performance

Author:

Yadav Rohit Ashok Kumar,Dubey Deepak Kumar,Chen Sun-Zen,Liang Tzu-Wei,Jou Jwo-Huei

Abstract

AbstractAbundant molecules enable countless combinations of device architecture that might achieve the desirable high efficiency from organic light-emitting diodes (OLEDs). Due to the relatively high cost of OLED materials and facilities, simulation approaches have become a must in further advancing the field faster and saver. We have demonstrated here the use of state-of-art simulation approaches to investigate the effect of molecular orbital energy levels on the recombination of excitons in OLED devices. The devices studied are composed of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) as hole transporting material (HTM), 4,4′-Bis(9-carbazolyl)-1,1′-biphenyl (CBP) as host, 2,2',2”-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) or bathophenanthroline (Bphen) as electron transporting materials. The outcomes reveal that exciton recombination highly sensitive to the energy-level alignment, injection barriers, and charge mobilities. A low energy-barrier (<0.4 eV) between the layers is the key to yield high recombination. The lowest unoccupied molecular orbital (LUMO) levels of the organic layers have played a more pivotal role in governing the recombination dynamics than the highest occupied molecular orbital (HOMO) level do. Furthermore, the Bphen based device shows high exciton recombination across the emissive layer, which is >106 times greater than that in the TPBi based device. The high carrier mobility of Bphen whose electron mobility is 5.2 × 10−4 cm2 V−1 s−1 may lead to low charge accumulation and hence high exciton dynamics. The current study has successfully projected an in-depth analysis on the suitable energy-level alignments, which would further help to streamline future endeavours in developing efficient organic compounds and designing devices with superior performance.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3