Warming and temperature variability determine the performance of two invertebrate predators

Author:

Morón Lugo Sonia C.ORCID,Baumeister MoritzORCID,Nour Ola MohamedORCID,Wolf FabianORCID,Stumpp MeikeORCID,Pansch ChristianORCID

Abstract

AbstractIn a warming ocean, temperature variability imposes intensified peak stress, but offers periods of stress release. While field observations on organismic responses to heatwaves are emerging, experimental evidence is rare and almost lacking for shorter-scale environmental variability. For two major invertebrate predators, we simulated sinusoidal temperature variability (±3 °C) around todays’ warm summer temperatures and around a future warming scenario (+4 °C) over two months, based on high-resolution 15-year temperature data that allowed implementation of realistic seasonal temperature shifts peaking midpoint. Warming decreased sea stars’ (Asterias rubens) energy uptake (Mytilus edulis consumption) and overall growth. Variability around the warming scenario imposed additional stress onto Asterias leading to an earlier collapse in feeding under sinusoidal fluctuations. High-peak temperatures prevented feeding, which was not compensated during phases of stress release (low-temperature peaks). In contrast, increased temperatures increased feeding on Mytilus but not growth rates of the recent invader Hemigrapsus takanoi, irrespective of the scale at which temperature variability was imposed. This study highlights species-specific impacts of warming and identifies temperature variability at the scale of days to weeks/months as important driver of thermal responses. When species’ thermal limits are exceeded, temperature variability represents an additional source of stress as seen from future warming scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference80 articles.

1. Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett 9, 228–241 (2006).

2. Doney, S. C. et al. Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science, Vol 4 4, 11–37, https://doi.org/10.1146/annurev-marine-041911-111611 (2012).

3. Pörtner, H.-O. et al. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Field, C. B. et al.) 411–484 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 2014).

4. Wong, P. P. et al. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Field, C. B. et al.) 361–409 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).

5. Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374, https://doi.org/10.1890/1540-9295(2007)5[365:Angoce]2.0.Co;2 (2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3