Exploring the mechanism of action of Sparganii Rhizoma-Curcumae Rhizoma for in treating castration-resistant prostate cancer: a network-based pharmacology and experimental validation study

Author:

Wu LitongORCID,Chen Haijun,Long Yan,Qiu Junfeng,Dai Xinjun,You Xujun,Li Tiantian

Abstract

AbstractSparganii Rhizoma-Curcumae Rhizoma (SR-CR) is a classic drug pair for the treatment of castration-resistant prostate cancer (CRPC), but its mechanism has not been clarified. The study aims to elucidate the potential mechanism of SR-CR in the management of CRPC. The present study employed the TCMSP as well as the SwissTargetPrediction platform to retrieve the chemical composition and targets of SR-CR. The therapeutic targets of CRPC were identified through screening the GeneCards, Disgenet, and OMIM databases. Subsequently, the Venny online platform was utilized to identify the shared targets between the SR-CR and CRPC. The shared targets were enrichment analysis using the Bioconductor and Kyoto encyclopedia of genes and genomes (KEGG) databases. The active ingredients and core targets were verified through molecular docking and were validated using PC3 cells in the experimental validation phase. A total of 7 active ingredients and 1126 disease targets were screened from SR-CR, leading to a total of 59 shared targets. Gene Ontology (GO) analysis resulted in 1309 GO entries. KEGG pathways analysis yielded 121 pathways, primarily involving cancer-related signaling pathways. The results from molecular docking revealed stable binding interactions between the core ingredients and the core targets. In vitro cellular assays further demonstrated that SR-CR effectively suppressed the activation of the Prostate cancer signaling pathway in PC3 cells, leading to the inhibition of cell proliferation and promotion of apoptosis. The SR-CR exert therapeutic effects on CRPC by inhibiting cell proliferation and promoting apoptosis through the Prostate cancer signaling pathway.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3