wideband high-gain low-profile series-fed antenna integrated with optimized metamaterials for 5G millimeter wave applications

Author:

Esmail Bashar A. F.,Koziel Slawomir,Pietrenko-Dabrowska Anna,Isleifson Dustin

Abstract

AbstractThis paper presents a series-fed four-dipole antenna with a broad bandwidth, high gain, and compact size for 5G millimeter wave (mm-wave) applications. The single dipole antenna provides a maximum gain of 6.2 dBi within its operational bandwidth, which ranges from 25.2 to 32.8 GHz. The proposed approach to enhance both gain and bandwidth involves a series-fed antenna design. It comprises four dipoles with varying lengths, and a truncated ground plane. These dipoles are connected in series on both sides, running in parallel through a microstrip line. The proposed design significantly enhances the bandwidth, which extends from 26.5 to 40 GHz. This frequency range effectively covers the 5G bands of 28 and 38 GHz. The expedited trust-region (TR) gradient-based search algorithm is utilized to optimize the dimensions of the antenna components, resulting in a maximum gain of 11.2 dBi at 38 GHz. To further enhance the gain, modified H-shaped metamaterial (MTM)-based unit cells are integrated into the antenna substrate. The TR algorithm is employed once more to optimize the MTM dimensions, yielding a maximum gain of 15.1 dBi at 38 GHz. The developed system is experimentally validated, showing excellent agreement between the simulated and measured data.

Funder

Icelandic Centre for Research

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3