Author:
Zhang Xiao,Gao Jianqun,Fan Dawei,Yang Qizheng,Han Fangjun,Yu Hongliang
Abstract
AbstractIn diesel-ignited natural gas marine dual-fuel engines, the pilot diesel injection timing (PDIT) determines the premixing time and ignition moment of the combustible mixture in the cylinder. The PDIT plays a crucial role in the subsequent development of natural gas flame combustion. In this paper, four PDITs (− 8 °CA, − 6 °CA, − 4 °CA, and − 2 °CA) were studied. The results show that the advancement of PDIT increased the engine's power, thermal efficiency, and natural gas flame spread velocity, and increased NO emissions and CH4 emissions of the marine engine. The PDIT affected the ignition delay period and the rapid combustion period to a greater extent than the slow combustion period and the post combustion period. With each 2 °CA advancement of PDIT, the engine's power increased by 69.87 kW, thermal efficiency increased by 0.42%, radial flame spread velocity increased by 2 m/s, axial flame spread velocity increased by 1.7 m/s, NO emissions increased by 6.1%, and CH4 emissions increased by 3.75%.
Funder
Natural Science Foundation of Shandong Province
Basic Research Project of Yantai Science and Technology Innovation Development Plan
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献