Conjugate buoyant convective transport of nanofluids in an enclosed annular geometry

Author:

Sankar M.,Reddy N. Keerthi,Do Younghae

Abstract

AbstractA vertical annular configuration with differently heated cylindrical surfaces and horizontal adiabatic boundaries is systematically studied in view to their industrial applications. In this paper, we investigate the effects of conjugate buoyant heat transport in water based nanofluids with different nanoparticles such as alumina, titania or copper, and is filled in the enclosed annular gap. The annulus space is formed by a thick inner cylinder having a uniform high temperature, an exterior cylindrical tube with a constant lower temperature, and thermally insulated upper and lower surfaces. By investigating heat transport for broad spectrum of Rayleigh number, solid wall thickness, thermal conductivity ratio and nanoparticle volume fraction, we found that the influence of wall thickness on thermal dissipation rate along wall and interface greatly depends on conductivity ratio and vice-versa. In particular, we uncover that the choice of nanoparticle in a nanofluid and its concentration are key factors in enhancing the thermal transport along the interface. Specially, copper based nanofluids produces higher heat transport among other nanoparticles, and for the range of nanoparticle concentration chosen in this analysis, enhanced thermal dissipation along the interface has been detected as nanoparticle volume fraction is increased. Our results are applicable to choose nanofluids along with other critical parameters for the desired heat transport.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3